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Theory of main chain nematic polymers with spacers 
of varying degree of flexibility 

by X. J. WANG*t and M. WARNER 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, England 

(Received 18 November 1991; accepted 21 February 1992) 

Main chain liquid crystal polymers are modelled as either worms or jointed 
rods. In reality they are composed of mesogenic units (rods) linked by spacers with 
varying degrees of flexibility. We present a molecular model to describe non- 
homogeneous nematic polymers. The model takes account of molecular para- 
meters, such as the lengths of the mesogenic group and the spacer units, and the 
interactions between them. The spacers are found to have an order differing from the 
mesogenic units. If the spacer is not very long and thus in effect is inflexible, one end 
of the spacer can retain to some extent the orientation of the other end, allowing 
orientational correlation between spacers mediated by the intermediate mesogenic 
unit. This is important in giving the chain a global rod-like behaviour as the nematic 
field becomes strong or the temperature low. The nematic order of the two 
components (mesogens and spacers), the nematic-isotropic transition as well as the 
latent entropy are examined. Furthermore, the anisotropic conformations of the 
polymers are investigated, which show either rod-like or random walk behaviour. 
Comparison of our results with experiment is found to be satisfactory. 

1. Introduction 
Most main chain liquid-crystalline polymers are composed of mesogenic groups 

linked by spacers with varying degrees of flexibility, such as repeated methylene, 
oxyethylene, or siloxane groups. The polymer is modelled either as a worm [ 1-41, as a 
rigid rod [5, 61 or as freely jointed rods. The rigid rod model is specially applicable for 
some lyotropic liquid crystals or biomolecules but it does not allow any flexibility of the 
polymer chain. However, when the chain is not completely rigid, chain flexibility in fact 
has a significant effect on the properties of polymers. The freely jointed rod chain treats 
the polymer as repeated rods, hence the polymer can be bent through the junctions. 
Unfortunately, it fails to deduce the transition to rod behaviour which is expected when 
the nematic field is strong. In a sense, the nematic worm theory has the advantage of 
easily describing polymers where the chain is regarded as an elastically inextensible, 
homogeneous chain. More recently Yurasova and Semenov [7] attacked the non- 
homogeneous polymer problem. They model spacers as worms, but relax the concept 
that the chain tangent vector is a unit vector and introduce a fixed chain length as a 
whole instead, in order that the standard Wiener integral can be used. However it is 
well-known that the relaxation of this constraint fails to give correct results even when 
dealing with the simple case, for example the isotropic chain [S]. 
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386 X. J. Wang and M. Warner 

Actually, the flexible spacers are constrained by the mesogenic units to which they 
are linked to have some orientational order. In turn they affect the order of the 
mesogenic units. If the spacers are not very long and not perfectly flexible, one end of 
the spacer can retain to some extent the orientation of the other end, allowing the 
spacers to talk to each other via the intervening mesogenic unit. They thus indirectly 
mediate nematic interactions. It is expected that spacers have an order differing from 
that of the mesogenic units. 

In this work the spheroidal approach [2,4] is exploited to describe the spacers, 
while the mesogenic groups are modelled as rods in a quadrupolar potential. The effect 
of the physical linkage and the van der Waals interaction between the rods and the 
worms is examined. The molecular parameters, such as the length of the rods and 
worms are also taken into account. The nematic-isotropic transition and some other 
statistical properties, such as the orientational order of the two components, i.e. 
mesogenic units and spacers, and the latent entropy are calculated as functions of the 
molecular parameters. 

Tremendous efforts have been made to synthesize liquid crystal polymers in the last 
decade and many experiments have been performed to investigate the dependence of 
the polymer properties on their molecular parameters. Qualitative agreement of the 
theory is found with the experiments. Comparisons are also made with the worm-like 
chain model and jointed rods models including the case of freely jointed rods. One 
result indicates that when the characteristic length of the polymer i.e. the persistence 
length, is marginally greater than the monomer length, the worm-like theory is 
applicable with its phenomenological bend elasticity expressed by a combination of 
molecular parameters as shown in this paper. The approach can be extended to 
monomers, dimers and oligomers. We shall discuss those problems in a separate paper. 
Although they have the same basic chemical formulae, the monomers, dimers, 
oligomers, and polymers whether linear or cyclic have their own characteristics, 
including the nematic-isotropic transition, nematic order, and dimensions for 
polymers, which are all available in the literature. 

2. The non-homogeneous nematic chain model 
Figure 1 is a sketch of the main chain liquid crystal polymer with which we are 

concerned. The chain is composed in sequence of rod-like, mesogenic units, referred to 
as A, segments of length a each, and flexible spacers, denoted as B worm-like sections of 
the chain of total contour length b each the degree of polymerization of the polymer is 
N. The rod-like segments A are treated in terms of a Maier-Saupe type theory [9], i.e. 
an orientational molecular field of quadrupolar symmetry representing both soft and 
steric contributions of the form P,(cos 0); spatially dependent interactions are not 
considered in this type of molecular field theory. Because there are two components A 
and B the soft coupling constant is diluted by a factor p, the volume fraction of the rod 
component. Assuming the two parts have the same cross section, the volume fraction is 
a/(a + b). 

The spheroidal approach [2,4] is exploited to describe the spacers, that is section B 
of the chain stiffness is characterized by the bend constant, E and this yields a persistence 
length lo = 2 ~ / k , T .  Perfect flexibility (and hence loss of memory of direction when 
traversing B) thus corresponds to b >> lo. The B section interacts with the mesogenic 
units, the coupling constant being u,,,, In the nematic phase, the mesogenic units A 
impose an orientational order on the B sections, denoted S,. S ,  is not necessarily the 
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Theory of nematic polymers with spacers 387 

Figure 1. A sketch of a molecularly non-homogeneous nematic chain. a, b are the lengths of the 
A segments and B sections of the chain, respectively. u is the tangent vector of the chain at 
contour length s, in ith monomer along the chain. e(si)  and 0' are the angles which the B 
section at si and the A segment make with respect to the director n, respectively. 

same as that of the A segments, S,,,. Usually S ,  < SA, i.e. the flexible part is less ordered 
than the mesogenic part. Both are ensemble averaged over all the segments, i.e. 

where Pz(x)  is the second Legendre polynomial, u is either the tangent vector u(si) 
describing the ith B chain at contour length si or the tangent vector ui that describes the 
direction of the rod part (A) of the ith monomer. n is the preferred direction, i.e. the 
director. 

The order parameter of the system as a whole S is expressed by the volume weighted 
mean of orders of the two components 

S = p s A  + (1 -p)Sp (2) 
The order parameter measured by birefringence will be weighted not only by volume 
fraction but also by the relative dielectric anisotropy. By selective deuteriation, NMR 
can measure SA and SB separately; in fact we can measure S ,  as a function of distance 
along the spacer. Our model, since it describes the worm-like segments, contains 
information about their order along their length s, that is S,(S) but we do not present 
these data here. 

Generally, there are three interactions in the system: the A-A, B-B and A-B 
interactions, represented by coupling constants per unit arc length u,,, Z)bb and 
u,b(uab = Ub,). The hamiltonian of the ith monomer consisting of an A segment linked 
with a B section, Hi, is 

E - W'aPZ(ui * n) + J { - WBPZ(u * n) + E (ey] dsi, 
2 dsi 

(3) 
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388 X. J. Wang and M. Warner 

where the couplings WA and WB are 

The subscripts A and B denote the A and B segments, respectively. Because of the 
lengths a and b in equations (3), when H i  is expressed as an energy per volume, then the 
factors of p and (1 - p )  will effectively become p 2 ,  p (  1 - p )  and (1 - p)2  in the usual 
expected way. The total hamiltonian H is the summation over all of the N monomers 

N 
H =  c Hi. 

i =  1 

So far this theory would be appropriate for a mixture of unconnected A and B 
segments. We connect them together, insisting that spacer and rod, at their junction 
have the same orientation. This represents an additional effective orientational A-B 
coupling and indirectly A-A and B-B coupling (mediated by the intervening species). 
The partition function Z of the polymer chain results from summing over all angles 8' 
for the rod (A) segments and over all choices of the shapes of chains u(si) for the B 
sections 

N N- 1 
x n q o i -  e(si = 0)) n qei+  1 - e(si = b)), (6) 

i =  1 i =  1 

where the Dirac delta functions, 6, ensure that the ends of spacers, B, have the same 
orientation as the successive A rods to which they are attached (see figure 1) and /I is 
Z/kBT. In terms of the spheroidal model of worm-like chains [2,4], the part of Z 
concerned with each B section can be expressed by the spheroidal wavefunctions. It is 
simply the conditional probability (Green function or propagator) that a chain starting 
with angle 8(si = 0) = do from one rod, ends with 8(si = b) = Ob at the next: 

where 1, and Sp,  are the nth eigenvalue and eigenfunction of the spheroidal wave 
equation of zeroth-rank. For simplicity we assume Sp,(B) is normalized to unity. 
Performing the sums over rod directions (the &functions simply set them equal to the 
directions of the relevant chain ends), the partition function becomes 
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Theory of nematic polymers with spacers 389 

We have changed to the more natural variable, z = cos 8, and taken only the ground 
state n=O in G. With this restriction the partition function Z is simply given by 

Z=exp (-AONb/lO){ Sexp [flawAP2(z)l[spO(z)12 

The next state to be involved is, for symmetry reasons, n = 2. We discuss this in detail in 
an appendix but at this stage note that we require exp [ - ( A 2  - AO)b/lO] to be small. In 
the nematic state ,I2 - I o  rapidly becomes large and this requirement becomes more 
easily satisfied. When the degree of polymerization N is high, we neglect the terms 
without the N factor in log(2) and hence Z becomes 

The total free energy per polymer has the form 

F= -k,TlnZ-~(U),  (10) 

where the first part arises from the partition function and the second term is from mean 
field theory to avoid double counting pair interactions. Putting 2 and U into equation 
(1 0) yields 

B F/(NkBT)=-(aWASA + bw~&)+  &b/lo 2 

The second and third terms are familiar as the mean field free energy of a worm chain of 
length Nb. The first term is the usual Maier-Saupe molecular field term for an isolated 
rod. The last term would simply be that of Maier-Saupe if the spacers were isotropic 
(the function Spo(z) = 1) .  The deviation from the simple rod form comes from additional 
orientational effects in the worm chain tied to each end of a rod segment-the two 
factors of Spo(z) included in the rod partition integral. It is the term that makes the 
problem differ from simply that of rods mixed with nematogenic worm chains. 

3. Orientational order 
We denote the following integrals as matrix elements for simplicity 

1 

Gm,n = 1 exp ~~awAP2(z)~S~m(z)S~n(z) dz9 

-1 

1 

Gt?n = exp [pa WAp2(z)lspm(z)spn(z) dz, 
-1 

1 

G g ’ n  = p 2 ( z )  exp [BawAP2(z)lSpm(z)Spn(z) dz* 
-1 
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390 X. J. Wang and M. Warner 

Minimizing the free energy in equation (1 1) with respect to SA and S ,  yields the order 
parameters of both A segments and B sections. The order parameter of the A segments 
is then given by 

The discussion of the new rod term in equation (1 1) for F is underlined by this result: 
when averaging Pz(z) the probability exp (PaW’P,(z)) is enhanced by the orientational 
tendency of the worms to which the rod is attached. The order of the B sections is then 

Z 

The coupling constant A’ is an important parameter in the spheroidal approach, 
A’= -3P’&W,. It is what determines the functions Spn(z) and the A,, are purely a 
function of A2. Actually we transformed from the S to the W variables in the 
calculation. The Pauli trick [6] gives the derivatives of I ,  and Sp ,  with respect to A’ in 
terms of the matrix elements. Consequently, S, is 

where (P2),,, = ~Sp,(z)P,(z)Sp,,(z)dz, and where the second term arises from the ends of 
spacers connected with rigid rods. When the chain is long enough compared with the 
persistence length, lo, the second part is small and may be neglected [4]. For the 
underlying polymers the second part makes an important contribution to the order 
parameter, which is attributed to the fact that the rods impose the orientational order 
on conjugated B sections, and the B section is not very long. Substituting SA and S, into 
equation (2) gives the resultant order parameter of the system. The spheroidal 
wavefunctions are expanded in a basis set of Legendre polynomials [4] in our 
numerical calculation. Figure 2 shows the dependence of the orientational order of the 
mesogen, the spacer parts and of the whole polymer, S,, S ,  and S.  SA has a typically 
Maier-Saupe-like temperature dependence. S, is a distinctly different function of 
temperature varying enormously with the polymer parameters. In the temperature 
region where SA undergoes its transition the B sections are actually in the paranematic 
state under the influence of the nematic field of the A segments. S ,  is therefore small. As 
the temperature decreases the B sections order and thus S,  becomes greater; S, is in 
general less than the order of the mesogenic units, A. 

4. Nematic-isotropic phase transition 
When the nematic-isotropic transition occurs the free energy of the phases is equal 
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Theory of nematic polymers with spacers 39 1 

T' 0 0 . 2  0 . 4  0 . 6  

Figure 2. Nematic order of the whole system and its two individual parts, i.e. mesogen and 
spacer, as a function of T', the temperature reduced by the nematic-isotropic transition 
temperature of the Maier-Saupe model for pure rods of length a. The two families of 
curves corresponding to a : b : I ,  = 2 : 2 : 1 (1) and 1 : 1: 1 (2). The interaction constants 
v,, : vab : vbb are 1 : 0 5  : 0.2. 

We normalize the temperature by the Maier-Saupe transition temperature for pure 
rigid rods of length, a, To = @22Q2auaa/k,. An advantage of doing so is that To may be 
available in the literature. For given molecular parameters, such as the interaction 
ratio, u,, : vab : Vbb, the length ratio a : b : lo, and hence the volume fraction p ,  the nematic- 
isotropic transition temperature of the liquid-crystalline polymers is plotted against the 
molecular parameters and will be discussed later. The temperature scale is relative to 
the Maier-Saupe value of the nematic-isotropic transition temperature, To. We shall 
adopt this reduction of temperature in all that follows, for instance Ted = TNI/To is the 
nematic-isotropic temperature reduced by the Maier-Saupe value for rods of length a. 

In this calculation, the coupling constants W, and W, or A2 are expressed in terms 
of the molecular parameters as 

and 

5. Latent entropy 
The entropy of a chain is given by [6] 
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392 X. J. Wang and M. Warner 

Putting 2 of equation (9) into equation (19) we obtain the entropy SN in the nematic 
state as 

The derivatives d/ag in the last term are complicated but can be simplified with the aid 
of expressions (13)  and (15).  Consequently, the latent entropy per monomer at the 
nematic-isotropic transition, AS,, is 

If we take into account the temperature dependence of lo =  BE, the latent entropy 
becomes 

It is obviously the additional temperature dependence of the persistence length that 
makes an extra contribution to the latent entropy, the factor of 2 in the first term. This 
change improves agreement with experiment, but the prediction is still low. 

6. Dimensions 
The end-to-end vector of the polymer is 

R(L) - R(0) = \I dsu(s) = [ auA(si) + 1: dsuB(si)]. 

Then the two principal values of mean square end-to-end tensor are given in terms of 
the orientational correlation functions as 

( R Z ) = a 2 C  C ( C O S ~ ~ C O S ~ ~ A ) + C  C dsidsj(cosOB(~i)~~~OB(~j)) 
i j  i j  
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Theory of nematic polymers with spacers 393 

where P;' and P;l are associated Legendre polynomials. After taking all of the 
orientational correlation functions the polymer mean square dimensions parallel to the 
director is 

where (P,)ol =~Spo(z)P,(z)Sp,(z) dz and 

Gl 1 

Goo 
x = - exp [-(I, - 10)b/lO], 

whether or not the chain takes a rod-like or a random walk depends on x. 
The dimension along the director, (RZ), is depicted in figure 3 (a) as a function of 

temperature relative to nematic-isotropic transition temperature of the polymer. The 
curves in figure 3 are given for several values of the spacer length reduced by the 
persistence length, b/lo = 05,1, and 2. It is shown that the dimension depends critically 
on the ratio b/lo. If the chain length is either long enough or very flexible the 
conformation of the polymer is basically a random walk. When the temperature is low 
the conformation of the polymer as a whole makes a transition to being rod-like, but if 
b/lo is smaller, the polymer behaves in rather a rod-like manner. For comparison the 
curves of freely jointed rods and the nematic worm chain are also drawn in figure 3 (a). 
It is seen that the freely jointed rod model never becomes rod-like, while the worm chain 
model is somewhat like the results here. 

The strong nematic limit, i.e. A'+ - a, sees x+ 1. In equation (25) we have I, +Io 
in this limit and hence the exponential factor - + l .  Likewise, the factors Goo and G,, 
depend on (Spa)' and (Spl)' and in this limit these are sharply peaked around O=O, n 
and become identical. In the limit x+l  the factors [1/(1 -x)+. . .] in equation (24) 
converge to 

] + E(N-1) 
1 1 1 - X N  

l-x N(1-x)' x-+i  2 

and 

thus the mean square dimension parallel to the director becomes N2(a + b)' which is 
expected from a perfectly ordered nematic polymer. 
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394 X. J. Wang and  M. Warner 

0.3 

0 0 . 2  0 . 4  0 . 6  0.8 T/TNI 
( b )  

Figure 3. The mean square dimensions parallel to the director, (RZ)/NZ(a +b)’ (a), and in the 
plane perpendicular to the director ( R 3 / 2 N ( a  + b)’/3 (b), as functions of temperature 
reduced by the nematic-isotropic transition temperature of the polymers. The curves 
correspond to b/l, =0-5,1,2, respectively. The dashed lines marked by F and W are drawn 
for the freely jointed rods model and worm model, respectively. 
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Theory of nematic polymers with spacers 395 

In the isotropic state, x = exp (- 2b/10), equation (24) is reduced to, after substituting 
1, = n(n + 1) and Sp,  = P,, the values at A2 = 0, 

(28) 
12 + - [ N -  1-exp(-2b/l0)] ++a10[2N- 1 -2exp(-2b/l0)], 
6 

where the first term is attributed to the A rods in a random walk, the second to the B 
worm spacers. The remaining three terms arise from requiring that rod and spacer have 
the same orientation at theirjunction. The approximations of b/l, >> 1 and N>> 1 further 
reduce equation (28) to 

( R : )  =*N[u(u+~~,)+ bl,]. (29) 
We notice that the step length for an A segment is no longer purely that of an individual 
rod because of the physical linkage between rods and spacers in a non-homogenous 
polymer. 

The mean square end-to-end distance (R;) in the plane perpendicular to the 
director has a form analogous to that of (R:), but with P i  instead of z (i.e. PI), S p :  
instead of S p ,  and 1: instead of A,, where Sp:  and 1: are the eigenfunction and 
eigenvalue of the first rank spheroidal wavefunction. The dependence of (Ri) as a 
function of the reduced temperature is plotted in figure 3 (b). Because the dimension 
perpendicular to the director, i.e. (Ri), is basically a random walk figure 3 (b) is plotted 
so that the vertical scale is relative to the random walk value for chains with step length 
(a + b) instead. This is in contrast to the choice of the perfectly ordered state in the case 
of (R:). 

If the persistence length of the polymer is greater than the monomer length the 
nematic worm model [2,4] is applicable. By comparison with equation (29) the 
effective bend elasticity can be extracted and is predicted to be 

Eeff = (1 + P)& + p2(a + b)/2P (30) 
which builds a bridge between the molecularly non-homogenous model and the worm 
chain model. As the spacer becomes very short ground state dominance is no longer 
valid (i.e. consideration of only the n = 0 state). An extreme, the elastic jointed rods case, 
is addressed elsewhere [lo]. If the mesogens become short enough and meanwhile the 
flexibility of the spacers decreases, the other extreme, it reduces to the worm chain. 

7. Results and discussion 
The nematic-isotropic transition, including aspects such as the transition tempera- 

ture, order parameters and latent entropy, depends on polymer parameters, such as the 
lengths a, b, 1, and the interactions u,,, uab and ubb; these are shown in figures 4-8. One of 
our important results shows the effect of the length of flexible spacer, b, on the 
transition. The reduced transition temperature xed decreases significantly when b 
increases while the latent entropy increases, as shown in figure 4. It is confirmed by 
many experiments [ 11-13] in which the transition temperature decreases substantially 
as the number of carbon atoms in the spacers increases. Such transitions also show the 
odd-even effect [l 11, however it will not be dealt with in this paper. This model could 
accommodate the oddwen  effect by fixing for odd/even spacers a variable offset angle 
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396 X. J. Wang and M. Warner 

between the rod and the attached worm spacer to replace the single constraint on the 
angles in equation (6). 

It has been found from experiment that most polymers with short spacers are 
neither fusible nor show a nematic phase until decomposition [ 111. In contrast, low 
molecular mass liquid crystals composed of the same mesogenic units exhibit a nematic 
phase, even though their flexible chains are short. This fact confirms our expectation, 
see figure 4, where the reduced nematic-isotropic transition temperature is much 
greater than unity when b is small and it may be far beyond the temperature of 
experiments under which the polymers may still be in the condensed phase. The limit 
b+O (at fixed a) forces the rods to act effectively as one single long rod (their hinges 
having become stiff). z e d  in figure 4 is the transition temperature relative to that of a rod 
segment unconnected to others, and hence it must increase ultimately to - N  as b-0. 

Van Luyen and Stzelecki [14] attempted to alter the size of the rod while keeping 
constant the number of methylene units, all having n = 9, of several polyesters. They 
found that the value of the nematic-isotropic transition temperature increases with the 
length of rods, the lengths being 13, 19, 25 A, which correspond to 200, 305, 35OoC, 
respectively. This trend is also seen in the curve of z e d  in figure 5. The limit a/b+O at 
fixed b, i.e. without rigid rods, actually corresponds to the worm chain limit. 
Substituting the relations, such as u,, : ubb = 1 : 0-2 and a = 410 =4(2Pc), and the worm 
chain result kgTN1/J(ubb~)=0.388 [4] we estimate T e d  in the plot in figure 5 to be about 
0.017, just as observed from the curve in this figure. The other limit, a+co at fixed b, 
shows an increase in Ted since this is relative now to the transition temperature of 
unconnected rods of length a=4. 

Ober et al. summarized the experimental data in their review paper [l5], which 
includes the effect of the flexibility of the spacers on TN,. The polymers, such as 

0 

0 

0 

0 

0 1 2 3 4 

a: b: 10 = 2: b: 1 

Figure 4. Depencence on spacer length b of the nematic-isotropic transition temperature red, 
relative to the Maier-Saupe transition temperature for pure rods of length a, order 
parameters, and latent entropy. 
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Figure 5. Dependence on the mesogen length a of the nematic-isotropic transition tempera- 

ture, relative to the Maier-Saupe transition temperature for pure rods with length a = 4, 
order parameters, and latent entropy. 

a: b: lo = 2: 2: lo 
Figure 6. Dependence on the persistence length I, of the nematic-isotropic transition 

temperature, relative to that of the Maier-Saupe theory for pure rods of length a, order 
parameters, and latent entropy. 
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I I I I I I I I I 

vaa:  Vab: Vbb = 1: vab: 0.2 
Figure 7. Dependence on the interaction ratio q,b/Uaa of the nematic-isotropic transition 

temperature, relative to that of the Maier-Saupe model for pure rods of length a, order 
parameters, and latent entropy. 

0 0 . 1  0 . 2  0.3 0 . 4  

vaa :  vab :  Vbb = 1: 0.5: V b b  

Figure 8. Dependence on the interaction ratio Uab/l.'Q,, of the nematic-isotropic transition 
temperature, relative to that of the Maier-Saupe theory for pure rods of length a, order 
parameters, and latent entropy. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
2
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Theory of nematic polymers with spacers 399 

polymethylene, polyoxyethylene and polysiloxane were addressed. Polysiloxane is 
more flexible than the other two as suggested, for example, by Ober et al. [l5], 
accordingly the polymer exhibits a lower transition temperature, which is experimen- 
tally observed as well by Ober et al. Cl5-J; such phenomenon is predicted in figure 6. A 
smaller persistence length 1, corresponds to a more flexible chain. The polymers 
become Maier-Saupe systems as lo/b+O. In this limit the spacers are completely 
flexible and the rods effectively independent of each other. Extrapolating the curve of 
T e d  versus lo in figure 6 to the limit 1, = 0 we obtain the reduced transition temperature 
T e d  = 0.5, a value appropriate for a dilute rod system with p = 0.5 (due to a = b in this 
case) which behaves like an effective interaction with respect to the unconnected case by 
which the temperature is being reduced. In the limit the perfect flexible spacers 
completely decouple the rigid rods. 

Although the predicted latent entropy is qualitatively in agreement with experiment 
[ll], it is smaller in value by a factor of about 2. The discrepancy may be due in part to 
the equal cross-section approximation. The rigid rods usually have a greater 
contribution to the latent entropy according to equation (21) and the cross-section of 
rods is usually greater than that of spacers. Therefore equation (21) may underestimate 
the latent entropy. 

The fact that the transition temperature of the polymers shows the same tendency 
as their low molecular mass liquid crystal counterparts with the mesogens as cores, see 
also [l5], is predicted in our theory in the manner of the normalization factor in TNI. By 
definition the reduced temperature TNI is inversely proportional to u,,, so higher u,, 
gives a larger transition temperature. 

Figures 7 and 8 show the effect of the interactions u4b and Ubb on the nematic- 
isotropic transition temperature, which is approximately proportional to the ratio 
U,b/u,,. It is, however, rather difficult to investigate the effect of u4b, which depends 
critically on the chemical structure and the configuration of the polymer molecules. 
Meanwhile the ratio ubb/U,, does not visibly affect the properties of the polymer. The 
results indicate that the order parameter of the mesogenic unit at the nematic-isotropic 
transition essentially does not vary, remaining at about 0.434 while there is significant 
variation in that of the flexible spacer. 

One extreme case, where the worm spacer flexibility decreases and the sections of 
the rigid rod become short, is the nematic worm chain limit. The other limit is where the 
worm spacer becomes so short, and hence effectively the spacer as a whole is of limited 
flexibility, so that successive rods have strong angular correlations induced between 
them. This case corresponds to the model of elastically jointed nematic rods, also 
treated elsewhere. Experiments are being carried out on polymers with deuteriated 
spacers, and/or deuteriated mesogenic groups. Neutron experiments will yield 
conformational information while NMR will yield order parameters, their precise 
values depending on detailed geometrical constraints. We have predicted the averaged 
values. The results of such experiments may be used to test the theory. 

Yurasova and Semenov [7] are specially interested in very long spacers. But it is 
actually not the case of real systems in which the persistence length is about the order of 
the spacer length. As is well-known, the relaxation of the condition of tangent of chains 
being a unit vector fails to deal with chains when they are not very long, so we expect a 
less reliable result from their calculation for short spacers. Also they produce fewer 
results to compare either with ours or with experiment. Some results seem strange, for 
instance, they do not reproduce the Maier-Saupe expectation when rods are very long, 
such as the order parameter at the nematic-isotropic transition. 
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Appendix 
Only the first two states in 2, i.e. the ground state and the first excited state have 

been taken into account in the model so far. The reason for the approximation is based 
on the evidence that the eigenvalues, which appear in the exponential in the propagator 
G, coalesce in pairs as A2 becomes large. For instance A, and A, come together, as do the 
next eigenvalues A, and I 3  while at the same time becoming distant from A, and A,, thus 
giving these terms exponentially smaller weight. Inserting the second two excited states 
into the partition function yields 

N 
z= J.. * n {exp C B ~ ~ * ~ z ~ ~ ~ ~ l c ~ ~ o ~ ~ b ~ ~ ~ o ~ ~ S ~ ~ ~ P ~ - ~ o ~ / ~ o ~ + ~ ~ , ~ ~ b ~ ~ ~ , ~ ~ S ~  

i =  1 

N - 1  

x exp ( - I, b/lo) + Sp2(zb)Sp2(z6) exp (- A,b/lo)] d(zb) d(zS)} n (26 - z: '). (A 1) 

The terms in S p ,  give zero on symmetry grounds (they are dipolar in character and 
vanish in the quadrupolar medium). After integrating 2 reduces to 

i =  1 

Z = exp (- AoNb/Zo~Goo)N 1 + N C ,  exp [ -(A, - Ao)b/Zo] 

+NC2exp[-2(L2-ao)b/l,] 

The ratio of the i-th and (i- 1)th terms is approximately 

The formulae from equation (9) are expected to be good provided the following 
condition is satisfied, i.e. the immediate next term in 2 which is neglected in equation (9) 
must be less than unity 

or 

The other potentially 
approximately 

N exp [ - ( I ,  - AO)b/lO] - << 1 (2:Y 

important term is the middle one in equation (A2) which is 

The combinatorial factor in this expression is 2N according to the Stirling approxim- 
ation to N!. Comparing with the first term in equation (A 2), this is unity, yields the 
inequality 
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which is less stringent on b/lo that is the inequality in equation (A 5). The other terms 
are, as sketched in equation (A 2), even more negligible. 

The matrix element ratio (Go2/GoO) is usually much less than unity, and the 
eigenvalue difference (A, -A,) is much greater than six, the non-nematic field value. 
Assuming the worst case where the matrix element ratio is unity and the eigenvalue 
difference is six (actually they never appear together), and taking typical values N = 20, 
100 or 400 yields the condition on spacer length: b/lo >0.499,0.768 or 0.998. The results 
do not change very much as N becomes even larger because of the logarithm in 
equation (A 5). The numerics confirm that for typical values a : b : 1, = 2 : 2 : 1, and 
u,, : uab : ubb = 1 : 0-5 : 0.2, the left hand side of equation (A 5 )  is always below 8 x N, 
and further is less at the nematic-isotropic transition where A2 = - 1.7. It demonstrates 
that equation (A 5 )  holds for a wide range of chain length. Above values for b/l, are 
actually an underestimate. 
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